
LLNL-PRES-688866
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Investigating interoperability and
performance portability of select LLNL
numerical libraries
DOE Center of Excellence Performance Portability Meeting

Glendale, Arizona, April 20, 2016

Slaven	Peles,	John	Loffeld,	Carol	S.	Woodward	and	
Ulrike	Yang	

LLNL-PRES-688866
2	

§  Challenges	

§  Descrip?on	of	LLNL	soBware	stack	

§  SUNDIALS	library	

§  Preliminary	performance	tes?ng	results	

§  Future	work	and	conclusion	

Outline	

LLNL-PRES-688866
3	

§  Implement	numerical	algorithms	in	a	way	that	makes	best	use	
of	heterogeneous	hardware	architecture	

§  Develop	code	that	can	evolve	along	with	the	new	hardware	--	
separate	plaMorm	specific	from	algorithmic	part	(RAJA,	Kokkos).		

§  Total	cost	of	ownership:	
— How	easy	is	it	to	deploy	the	code	in	new	environments?	
— How	easy	is	it	to	add	new	features?	
— What	is	the	maintenance	cost?	

§  Technical	debt	management	

Challenges	
Por?ng	exis?ng	codes	to	heterogeneous	hardware	architectures	

Maximizing	performance	is	but	one	of	several	challenges	that	need	to	be	addressed	when	
moving	to	new	architectures.	

LLNL-PRES-688866
4	

MFEM:	A	free,	lightweight,	scalable	C++	library	for	
finite	element	methods.	

SUNDIALS:	Suite	of	state-of-the-art	numerical	
integrators	and	nonlinear	solvers.	

hypre:	A	library	for	solving	large,	sparse	linear	systems	
of	equa?ons	on	massively	parallel	computers	

	

LLNL	So<ware	Stack	
Libraries	currently	being	ported	to	heterogeneous	architectures	

Maintaining	interoperability	and	performance	portability	of	the	soBware	stack	is	more	
challenging	on	heterogeneous	architectures.	

The combined use of MFEM, hypre and SUNDIALS is critical for the
efficient solution of a wide variety of transient PDEs, such as non-linear
elasticity and magnetohydrodynamics.

LLNL-PRES-688866
5	

Numerical	simulaAon	and	data	flow	
Use	case:	implicit	integra?on	scheme	with	itera?ve	linear	solver	

No

No

No

Converged?

Final time?

Converged?

Linear solver step

Time integrator step

Nonlinear solver step

Finite elements tools:
Function and Jacobian

evaluation

Updated solution vector x

Preconditioner P

dx

x

SUNDIALS

hypre

MFEM

Updated residual vector f and Jacobian J

Time integrator and
nonlinear solver
agnostic of vector
data layout.

Numerical
integrators and
nonlinear solvers
may invoke fairly
complex step size
control logic.

f, J

LLNL-PRES-688866
6	

§  GPU	processing	power	>>	CPU	processing	power	

§  GPU	memory	<<	CPU	memory	

§ Moving	data	between	CPU	and	GPU	is	expensive	

§  Proposed	computa?on	layouts:	

§  Best	layout	most	likely	problem	dependent.			

How	to	lay	out	the	computaAon?	
Considering	constraints	of	heterogeneous	architectures	

Numerical Integrator Linear Solver Function Evaluation
GPU GPU GPU

CPU GPU GPU

CPU GPU CPU

CPU CPU GPU

CPU/GPU CPU/GPU CPU/GPU

LLNL-PRES-688866
7	

§  Forward	looking,	extensible	object	oriented	design	with	simple	and	clean	linear	
solver	and	vector	interfaces.	

§  Designed	to	be	incorporated	into	exis?ng	codes.	

§  Modular	structure	allows	users	to	supply	their	own	data	structures.	

§  Scales	well	in	simula?ons	on	over	500,000	cores.		

§  Supplied	with	serial,	MPI	and	thread-parallel	(openMP	and	Pthreads)	structures.		

§  CMAKE	support	for	configura?on	and	build.	

§  Freely	available,	released	under	BSD	license;	Over	4,500	downloads	per	year.	

§  Modules	and	func?onality:	
—  ODE	integrators:	(CVODE)	variable	order	and	step	s?ff	BDF	and	non-s?ff	Adams,	(ARKode)	

variable	step	implicit,	explicit,	and	addi?ve	Runge-Kuka	for	IMEX	approaches.	
—  DAE	integrator:	(IDA)	variable	order	and	step	s?ff	BDF.	
—  CVODES	and	IDAS	include	forward	and	adjoint	sensi?vity	capabili?es.	
—  KINSOL	nonlinear	solver:	Newton-Krylov	and	accelerated	fixed	point	and	Picard	methods.	

SUNDIALS	
Suite	of	state-of-the	art	numerical	integrators	and	nonlinear	solvers		

LLNL-PRES-688866
8	

§  Power	grid	modeling	(RTE	France,	ISU)	
§  Simula?on	of	clutches	and	power	train	parts	(LuK	

GmbH	&	Co.)	
§  Electrical	and	heat	genera?on	within	bakery	cells	

(CD-adapco)	
§  3D	parallel	fusion	(SMU,	U.	York,	LLNL)	
§  Implicit	hydrodynamics	in	core	collapse	supernova	

(Stony	Brook)	
§  Disloca?on	dynamics	(LLNL)	
§  Sensi?vity	analysis	of	chemically	reac?ng	flows	

(Sandia)	
§  Large-scale	subsurface	flows	(CO	Mines,	LLNL)	
§  Op?miza?on	in	simula?on	of	energy-producing	

algae	(NREL)	
§  Micromagne?c	simula?ons	(U.	Southampton)	

SUNDIALS	
Used	in	industrial	and	academic	applica?ons	worldwide	

Magnetic reconnection

Core collapse
supernova

Dislocation dynamics

Subsurface flow

LLNL-PRES-688866
9	

Interfacing	SUNDIALS	with	other	so<ware	

§  Specifies:	
—  3	constructors/destructors		
—  3	u?lity	func?ons.	
—  9	streaming	operators.	
—  10	reduc?on	operators.	

§  En?re	interac?on	with	
applica?on	data	is	carried	out	
through	these	19	operators.		

§  All	are	level-1	BLAS	operators.	

§  Individual	modules	require	only	
a	subset	of	these	operators.	

§  Specifies	following	five	func?ons:	
init,	setup,	solve,	perf	and	free.		

§  SUNDIALS	only	requests	linear	
solves	at	specific	points.	It	is	
independent	of	linear	solve	
strategy.	

§  Implementa?on	of	hypre	linear	
solver	interface	is	in	progress.		

Vector interface Linear solver interface

Object	oriented	design	and	well	defined	interfaces	simplify	por?ng	SUNDIALS	to	new	plaMorms.	

LLNL-PRES-688866
10	

SUNDIALS	vector	kernels	performance	tesAng	
Standalone	kernel	performance	

0.00#

0.10#

0.20#

0.30#

0.40#

0.50#

0.60#

0.70#

0.80#

0.90#

1.00#

10# 100# 1000# 10000#

Pe
ak
%b
an

dw
id
th
%fr
ac
0o

n%

Number%of%vector%elements%
Thousands%

GPU#

CPU#

0.00#

0.10#

0.20#

0.30#

0.40#

0.50#

0.60#

0.70#

0.80#

0.90#

1.00#

10# 100# 1000# 10000#

Pe
ak
%b
an

dw
id
th
%fr
ac
0o

n%

Number%of%vector%elements%
Thousands%

GPU#

CPU#

axpy

dot product

0.0#

0.1#

1.0#

10.0#

10# 100# 1000# 10000#

Sp
ee
du

p&
fa
ct
or
&

Number&of&vector&elements&

Thousands&

axpy#

dot#product#

% of theoretical peak throughput Speedup compared to CPU

§  Compared	CUDA	implementa?on	with	
corresponding	threaded	MKL	calls.	

§  Peak	bandwidth	of	GPU	is	~3x	larger	than	
CPU	bandwidth	on	the	test	hardware.	

§  axpy	shows	speedup	on	GPU	for	N	>	104,	
dot	product	for	N	>	106.	

LLNL-PRES-688866
11	

Anderson	AcceleraAon	Solver	Performance	
A	simple	nonlinear	solver	method	implemented	in	SUNDIALS	

§  For	vectors	less	than	10,000,	CPU	versions	take	
less	?me	than	GPU	version.	

§  CPU	version	costs	remain	approximately	
constant	un?l	vector	lengths	reach	100.	

§  GPU	version	cost	is	constant	un?l	vector	is	
10,000	–	length	at	which	the	work	per	vector	
dominates	overhead	per	vector	opera?on.	

§  Times	approach	linear	with	vector	length	

§  When	both	CPU	and	GPU	versions	are	in	linear	
regime,	we	expect	ra?o	between	?mings	to	be	
approximately	ra?o	of	bandwidth.	

§  Threading	reduces	run?me	on	CPU.	

§  GPU	gives	more	benefit	on	large	problem.	

Its = 16,
m = 16

Its = 16,
m = 4

Run times for CPU and GPU
(function cost not timed)

LLNL-PRES-688866
12	

Anderson	AcceleraAon	Solver	Performance	
CPU-GPU	computa?on	layout	

§  Applied	16	itera?ons	with	simple	func?on,	f(x)	=	x;	touches	2	vectors	

§  CPU	runs	used	all	16	cores	and	16	threads	

§  Timed	4	combina?ons:	
—  Both	func?on	evalua?on	(FE)	and	vector	opera?ons	on	same	side	of	bus	
—  And	on	opposite	side:	CPU	(GPU)	=	vectors	on	CPU,	FE	on	GPU	

§  Fastest	?mes	occur	when	vectors	are	
on	GPU	

§  FE	on	opposite	side	of	bus	causes	data	
transfer	every	itera?on	

§  For	this	“light	weight”	func?on,	not	
worth	compu?ng	it	on	GPU	if	vector	
opera?ons	are	not	also	on	GPU	(in	fact,	
this	gives	worst		performance)	

LLNL-PRES-688866
13	

Anderson	AcceleraAon	Solver	Performance	
Data	transfer	overhead	

§  16	its	with	m		=	16	

§  For	small	vectors	cost	to	
transfer	is	much	higher	%	
of	AA	on	CPU	than	AA	on	
GPU	

§  For	large	vectors,	cost	to	
transfer	is	far	larger	%	of	
AA	on	GPU	

§  AA	is	fast	on	GPU	so	
bandwidth	cost	of	data	
transfer	significantly	
increases	compared	to	cost	
of	vector	ops	on	GPU	

Cost to transfer one vector across PCI bus as a
% cost of AA operations (mostly vector ops) for
various vector sizes

LLNL-PRES-688866
14	

§  Test	case:	Mul?-run	simula?on	of	a	combus?on	kine?c	problem	
cast	in	terms	of	s?ff	ODEs.	Model	and	solver	both	run	on	GPU.	

§  Single	ODE	system	small	(19	equa?ons),	number	of	runs	large.	

Other	aIempts	to	port	SUNDIALS	to	GPU	
Stone	&	Davis	2013	

performance of the RKF45 algorithm can be directly compared with
the baseline DVODE and GPU-based CVODE algorithms.
Figures 4 and 5 show the run time and speed up of the serial CPU

and parallel GPU ODE solvers. The speed up is presented as a
function of the number of ODEs solved per kernelNode and is relative
to the serial CPU DVODE run time. Some variation in cost is
observed between the codes for small Node due to differences in the
ICs; however, these differences are largely averaged away after 103

ODEs. Beyond that point, both DVODE and RKF45 scale linearly
with Node. Overall, the DVODE run time is approximately 50%
faster, despite taking twice the number of integration steps (on
average). The cost saving inDVODE comes largely from the reduced
number of RHS evaluations per integration step. For instance,
DVODE required only 1.78 RHS evaluations per step on average,
compared with six for RKF45 for Node ! 50; 000. The number of
failed integration steps in RKF45wasminor at this point: Only 5.6% of
the integration steps failed, forcing refinement. As noted previously, the
sequential cost-saving measures taken by DVODE (e.g., Jacobian
recycling) may prove counterproductive in the many-core GPU envi-
ronment. However, the CUDA RKF45 implementations must over-
come nearly a 50% performance penalty to break even with DVODE.

C. Ordinary Differential Equation Performance: GPU

The performance of the GPU implementations of the CVODE and
RKF45ODE solvers is now analyzed relative to the baselineDVODE
and RKF45 solvers executed serially on the CPU. Referring again to
Fig. 5, the CUDA-CVODE one-thread performance is seen to be
many times slower than DVODE until Node exceeds 103. After this
breakeven point, the speed up with the CUDA-CVODE one-thread
grows slowly, eventually reaching a steady 7.7x speed up over the
baseline DVODE CPU solver.
CUDA-RKF45 one-thread follows a similar scaling trend but is

consistently 2.3x faster than CUDA-CVODE one-thread over the
entire range of Node. The breakeven point with the CUDA-RKF45
one-thread solver is between 102 and 103 ODEs; the speed up is
already 2.4x at only 103 ODEs. The maximum speed up for the
CUDA-RKF45one-thread solver is 20.2x over the serialDVODE run
time. This 20.2x speed up matches closely to the CUDA RHS speed
up previously reported, suggesting that the RHS function is the
limiting factor in the throughput using the CUDA-RKF45 one-thread
method. Note that CUDA-RKF45 one-thread is 28.6x faster than the
serial CPU implementation of RKF45.
Both one-thread versions of CUDA-CVODE and CUDA-RKF45

suffer from poor performance when Node is small. This is consistent
with the one-thread RHS-only results shown earlier in Fig. 2. The
CUDA-RKF45 one-block breakeven point is only slightly greater
than 10 ODEs: far sooner than either one-thread ODE
implementation and also sooner than was observed for the one-
block RHS-only results. CUDA-RKF45 one-block quickly reaches a
maximum speed up of 10.7x relative to DVODE at N ≈ 104. Again,
the CUDA-RKF45 one-blockmaximum speed upmatches closely to
the one-block RHS implementation (approximately 11x speed up),
clarifying that theRHS function is the limiting factor for bothCUDA-
RKF45 implementations. The CUDA-CVODE one-block perfor-
mance is nearly identical to CUDA-RKF45 one block for smallNode

but achieves only a 7.3x speed up for large Node.
The relative overhead cost can be inferred by referring back to

Fig. 2. The absolute overhead for the ODE solvers is the same as the
RHS-only performance test. Recall that the RHS function must be
called at least 60 times (a minimum of 10 time steps) by the RKF45
ODE solver. There are similar lower limits for CVODE as well. This
effectively amortizes the overhead reported in Fig. 2 over manymore
RHS function evaluations and reduces the relative overhead. The
CUDA-CVODE one-block overhead accounts for only 1.5% of the
total run time when Node is less than 100 and quickly drops below
0.1% for large Node. Obviously, the data transfer and memory
allocation overhead has little impact on the peak CUDAODE solver
performance.
The preceding benchmarks showed the performance of the various

ODE solvers on a database of ICs taken from actual LEM
simulations. In these simulations, hundreds of LEM cells are used to
discretize the LEM computational domain. Many different LEM
simulations are therefore solved concurrently when Node is much
greater than 103. Recall that the LEM can be viewed as a 1-D DNS
method, and therefore the concentration profiles and temperature
should vary smoothly throughout the domain. For example, Fig. 1
showed a non-premixed combustion simulation with 241 LEM cells.
Because the profiles vary smoothly, neighboring LEM cells within

H
2 H O O
2

O
H

H
2O

H
O

2

H
2O

2

C
H

3

C
H

4

C
O

C
O

2

C
H

2O

C
2H

2

C
2H

4

C
2H

6

C
H

2C
O

C
3H

6

N
2

T
em

p

Species Name

-14

-12

-10

-8

-6

-4

-2

0

L
og

10
(e

rr
or

)

L2

Linf

Fig. 3 Numerical difference between DVODE and RKF45 over 50,000
ODEs. Difference shown in the L2 and L∞ norm.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of ODEs

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

W
al

l c
lo

ck
 ti

m
e

(s
)

CPU-DVODE
CUDA-CVODE (Thread)
CUDA-CVODE (Block)
CPU-RKF45
CUDA-RKF45 (Thread)
CUDA-RKF45 (Block)

Fig. 4 Total run time of the baseline CPU DVODE and RKF45 solvers
and their CUDA counterparts.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of ODEs

10
-3

10
-2

10
-1

10
0

10
1

10
2

Sp
ee

d
up

 to
 D

V
O

D
E

CUDA-CVODE (Thread)
CUDA-CVODE (Block)
CPU-RKF45
CUDA-RKF45 (Thread)
CUDA-RKF45 (Block)

Fig. 5 Speed up of RKF45 and the CUDA ODE solvers relative to the
baseline CPU DVODE run time.

STONE AND DAVIS 771

D
ow

nl
oa

de
d

by
 U

N
IV

ER
SI

TY
 O

F
CA

LI
FO

RN
IA

 -
D

A
V

IS
 o

n
Ju

ly
 2

4,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
10

.2
51

4/
1.

B3
48

74

§  Used	BDF	(CVODE)	and	Runge-Kuka	
integrators.	

§  Paralleliza?on	strategies:	
— One	ODE	system	per	thread.	
— One	ODE	system	per	block.	

§  Reported	speedup	for	CVODE	is	7x	
in	per	block	scheme,	compared	to	
serial	case.	 Stone, Christopher P., and Roger L. Davis. "Techniques for solving

stiff chemical kinetics on graphical processing units." Journal of
Propulsion and Power 29.4 (2013): 764-773.

LLNL-PRES-688866
15	

§  Prototype	and	implement	basic	data	structures	for	the	soBware	
stack	(vector,	matrix)	
—  Implemented	in	hypre.	
—  SUNDIALS		and	MFEM	use	wrappers	around	hypre	objects.	

§  Separate	par??oning	from	numerical	algorithms	
—  Parallelize	using	OpenMP4	pragmas	
— Use	RAJA	underneath	
— Use	Kokkos	underneath	

§ Maintain	interoperability	of	the	stack	

§  Port	the	stack	to	heterogeneous	plaMorm.	

§  Carry	out	performance	analysis	of	the	stack	in	different	
configura?ons	and	on	different	hardware.	

Next	Steps	

LLNL-PRES-688866
16	

§  Heterogeneous	hardware	architectures	are	promising,	but	
there	are	s?ll	many	challenges	to	overcome.	We	now	operate	in	
an	environment	with	many	more	degrees	of	freedom.	

§  LLNL	SoBware	Stack	libraries	needs	to	be	ported	as	a	whole.	
Work	on	individual	libraries	cannot	be	done	in	isola?on.	

§  Conven?onal	wisdom	may	not	apply	–	we	may	need	to	redefine	
computa?onal	strategies,	not	simply	port	the	same	algorithms	
to	new	architectures.	

§  Lots	of	heavy	liBing	ahead	of	us:	Need	to	create	test	cases,	
benchmark	performance,	analyze	and	improve	algorithms.		

Conclusions	

